Transfer Entropy and Transient Limits of Computation

نویسندگان

  • Mikhail Prokopenko
  • Joseph T. Lizier
چکیده

Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Entropy Generation Analysis During Wustite Pellet Reduction to Sponge Iron

The present study carefully examined entropy generation during wustite pellet reduction to sponge iron. The finite volume method was used to solve the governing equations. The grain model was used to simulate the reaction rate. The reactant gases including carbon monoxide and hydrogen were converted to water and carbon dioxide after wustite reduction. Entropy is generated by heat transfer, mass...

متن کامل

Assessment of ATC Using Voltage and Transient Stability, Simultaneously

Methods for calculating Available Transfer Capability (ATC) of the transmission systems may be grouped under Static and Dynamic methods. This paper presents a fast dynamic method for ATC calculations, which considers both Transient Stability Limits and Voltage Stability Limits as terminating criteria. A variation of Energy Function Method is used to determine the transient stability limit and t...

متن کامل

Assessment of ATC Using Voltage and Transient Stability, Simultaneously

Methods for calculating Available Transfer Capability (ATC) of the transmission systems may be grouped under Static and Dynamic methods. This paper presents a fast dynamic method for ATC calculations, which considers both Transient Stability Limits and Voltage Stability Limits as terminating criteria. A variation of Energy Function Method is used to determine the transient stability limit and t...

متن کامل

Entropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli

In this paper, second law analysis for calculations of the entropy generation due to the flow andheat transfer of water-Al2O3 and ethylene glycol-Al2O3 nanofluids inside annuli is presented. Thephysical properties of the nanofluids are calculated using empirical correlations. Constant heatfluxes at inner surface of the annuli are considered and fully developed condition for fluid flowand heat t...

متن کامل

Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system

Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014